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We investigate alternative annealing schedules on the current generation of quantum annealing
hardware (the D-Wave 2000Q), which includes the use of forward and reverse annealing with an-
intermediate pause. This work provides new insights into the inner workings of these devices (and
quantum devices in general), particular into how thermal effects govern the system dynamics. We
show that a pause mid-way through the anneal can cause a dramatic change in the output distri-
bution, and we provide evidence suggesting thermalization is indeed occurring during such a pause.
We demonstrate that upon pausing the system in a narrow region shortly after the minimum gap,
the probability of successfully finding the ground state of the problem Hamiltonian can be increased
by several orders of magnitude. We relate this effect to relaxation (i.e. thermalization) after diabatic
and thermal excitations that occur in the region near to the minimum gap. For a set of large-scale
problems of up to 500 qubits, we demonstrate that the distribution returned from the annealer very
closely matches a (classical) Boltzmann distribution of the problem Hamiltonian, albeit one with a
temperature at least 1.5 times higher than the (effective) temperature of the device. Moreover, we
show that larger problems are more likely to thermalize to a classical Boltzmann distribution.

I. INTRODUCTION

Inspired by thermal annealing and by the adiabatic
theorem of quantum mechanics, quantum annealers are
designed to make use of diminishing quantum fluctua-
tions in order to efficiently explore the solution space of
particular discrete optimization problems. In the last few
years, chip sizes have grown in accordance with Moore’s
law, and current devices contain on the order of 2000 su-
perconducting qubits, potentially allowing for relatively
large scale problems to be solved. Though progress has
been made [1, 2], it has been hard to quantitatively
demonstrate a general and rigorous ‘quantum speedup’
[3].

It has been suggested that these devices may instead be
useful for thermal sampling tasks [4–7], such as the NP-
hard problem of sampling from a Boltzmann distribution,
which has application in machine learning and artificial
intelligence [5, 6, 8]. Though it has been demonstrated
that (classical) thermalization may indeed be occuring in
these devices [9], there are still many unanswered ques-
tions pertaining to the exact distribution they sample
from.

With the introduction of the latest generation of quan-
tum annealing hardware, the D-Wave 2000Q, which al-
lows one to change the default annealing schedule, in-
cluding the ability to pause the anneal mid-way through
the evolution for extended periods of time (up to around
1ms), new insights can be gained into the operation of
these devices.

In particular we use intermediate pauses, followed by
a ‘quench’ (i.e., evolving the system rapidly to the read-
out point) to study effects of thermalization, and how
this relates to key properties of the system, including the

location of the minimum energy gap. The observations
we make are relevant not only for quantum annealers,
but for any quantum device which is non-negligibly cou-
pled to a thermal environment, thus shedding light on
fundamental physical processes involved across a broad
range of devices.

We first go through some relevant details pertaining
to annealing and the theory of thermalization in such de-
vices, before presenting our main results. After this, we
summarize and interpret our results, as well as raising
some new questions which should be answered in future
works. We finish with a brief discussion setting our re-
sults in a broader context.

A. Background

Transverse field quantum annealing evolves the system
over rescaled time s = t/ta ∈ [0, 1], where t is the time,
and ta ∈ [1, 2000]µs the total run-time (chosen by the
user). We will occasionally refer to the rate of the anneal
ds/dt which can be set to zero during the pause or take
values in interval ds/dt ∈ [0.0005, 1]µs−1 otherwise. The
time-dependent Hamiltonian is of the form

H(s) = A(s)Hd +B(s)Hp , (1)

where Hp =
∑
〈i,j〉 Jijσ

z
i σ

z
j +

∑
i hiσ

z
i is the pro-

grammable Ising spin-glass problem (the final Hamilto-
nian) to be sampled defined by the parameters {Jij , hi},
and Hd = −

∑N
i σ

x
i is a transverse-field (or ‘driver’)

Hamiltonian which provides the quantum fluctuations
(the initial Hamiltonian). Here N is the total number of
qubits in the problem, and 〈i, j〉 indicates the sum is only
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FIG. 1. Annealing schedule in GHz (units of h = 1). The
operating temperature (T = 12.1 mK, or equivalently 0.25
GHz) of the chip is also shown (black-dashed line).

over a coupled qubits, defined by the hardware ‘chimera’
graph (see Fig. 23 of Appendix D). The device we use,
the D-Wave 2000Q contains 16×16 unit cells each con-
taining 8 qubits, thus having a maximum of 2048 qubits.
Note however, due to some of the qubits/couplers be-
ing faulty, the actual number of operating qubits is 2031.
These ‘dead’ qubits are randomly dispersed throughout
the hardware graph.

The initial state is fixed as the ground state of Hd,
|ψ(0)〉 = |+〉⊗N where |+〉 = 1√

2
(|0〉+ |1〉) (defined in the

computational basis via σz = |1〉〈1|−|0〉〈0|). The manner
in which the Hamiltonian is evolved in time is determined
by the annealing schedule (i.e. the time dependence of
A,B), shown in Fig. 1.

After an annealing run, the system is measured in the
computational basis. Performing many such runs allows
statistics about the device to be collected; useful such
measures include the probability of successfully finding
the ground-state of Hp (which is the solution to a classi-
cal optimization problem) which we denote as P0, or the
average energy returned 〈E〉.

One way to provide more robust statistics, is by chang-
ing the ‘gauge’ of the problem. This is a trivial re-
mapping of the problem so as to avoid certain biases
which may be present for certain couplers/qubits (e.g.,
some couplers may have less analog control errors asso-
ciated with programming in J = +1 as compared to J =
−1, or certain qubits may be more likely to align with
+z as compared to −z even in the absence of any fields).
The mapping involves changing the couplings/fields as
Jij → Jijrirj , hi → hiri, where −→r = (r1, . . . , rN ) is a
vector of random entries ri ∈ {−1, 1}. Notice any con-
figuration −→s = (s1, . . . , sN ) has a corresponding config-

uration of the mapped problem
−→
s′ = (r1s1, . . . , rNsN )

with the same cost, thus the problem itself is exactly the
same.

FIG. 2. Dimensionless annealing schedule. We plot the ratio
Q(s) := A(s)/B(s), and the ratio of the operating tempera-
ture (T = 12.1mK) to the strength of the problem Hamilto-
nian, C(s) := kBT/B(s).

An important quantity identified in Ref. [9] is the ra-
tio between the strength of the driving Hamiltonian,
and the problem Hamiltonian, and we define this as
Q(s) := A(s)/B(s), as shown in Fig. 2. Moreover, clas-
sical thermal fluctuations are governed by the quantity
C(s) := kBT/B(s), where T is the temperature of the
device. Indeed, observing the relative scales of the char-
acteristic energies associated to the driving terms (i.e.
transverse field, environmental bath) with the energy
of the closed system allows us to infer the existence
of different regimes where a given process becomes en-
ergetically dominant. In particular, i) at early times
when Q � C > 1, and the system mostly remains
in the ground state of Hd, ii) when Q ∼ C ∼ O(1)
and non-trivial dynamics occur with Hd driving various
transitions between computational basis states, and iii)
Q � C � 1 when the Hamiltonian is mostly diagonal
(in the computational basis) and little population trans-
fer occurs between the eigenstates (the ‘frozen’ region)
through diabatic transitions. Thermal transitions could
occur but those depend also on the strength of the cou-
pling to the thermal bath (see below).

B. Adapting the standard annealing schedule

The current generation of hardware, the D-Wave
2000Q, allows users to tweak the default schedule in var-
ious ways. In particular this gives one the ability to:

1) Pause the evolution at some intermediate point
sp < 1 in the anneal, for time tp.

2) Perform reverse annealing, where the system is ini-
tialized in a classical configuration at time s = 1,
evolved backwards to an earlier time sp < 1, where
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FIG. 3. Example of annealing parameter s as a function of
time t for an anneal with a pause, for both forward and reverse
annealing. Here a 1µs pause (tp = 1µs) is inserted into the
annealing schedule at sp = 0.5 (i.e. at t = 0.5µs), which
otherwise has a total anneal time of ta = 1µs.

a pause can be inserted, before evolving the system
back to time s = 1 where a read-out occurs.

3) Speed-up or slow-down the schedule during inter-
mediate intervals of the anneal.

4) Provide per-qubit annealing offsets.

Based on these features, new methods of sampling from
an annealer have been developed and proposed, for ex-
ample exploiting reverse annealing to explore the energy
landscape in a novel manner [10–14]. Moreover, perfor-
mance advantages have been observed by offsetting the
fields of some of the qubits, allowing one to evade spu-
rious transitions which occur during the minimum gap
[15, 16].

The work presented in this paper mostly focuses on
the first capability listed above, where we embed a pause
in the default annealing schedule, i.e., the Hamiltonian
is fixed at H(sp) for a certain period of time chosen by
the user. This will allow us to study key mechanisms
determining the output of the device, such as thermal-
ization. We also briefly study reverse annealing in a simi-
lar context as it enables one to learn learn about different
regimes during the anneal (as discussed in Sect. II B). We
show an example of an annealing schedule with a pause
in Fig. 3.

C. Theory

It has been argued that the output of devices of this
type corresponds to a quasi-static evolution [4]; one in
which the internal system dynamics are much slower than
the dynamics induced by the environment, meaning the
system thermalizes instantaneously.

Results however seem to suggest that the final state
is not the Boltzmann distribution of the problem Hamil-
tonian at s = 1 [9]; that is, the samples are not drawn
from ρ ∼ exp(−βB(1)Hp), where β = 1/kBT , with T
the operating temperature of the device (on the order of
10mK in current devices).

A possible explanation for this observation is that there
is a problem dependent freeze-out point, s∗, which oc-
curs at some time when Q(s∗) and C(s∗) are ‘small’, so
that the time-scale upon which the transverse field drives
transitions between eigenstates ofHp is much longer com-
pared to the system evolution time, hence little popula-
tion transfer occurs. This would mean that one is sam-
pling from a Boltzmann distribution of the Hamiltonian
at time s∗, instead of at s = 1. If indeed this occurs when
Q(s∗) � 1, the expected distribution would be close to
the form ρ ∼ exp(−βB(s∗)Hp) [4, 9].

An open-system treatment of this phenomena is de-
scribed in Ref. [17] in the weak coupling regime for gen-
eral problems, and in [18, 19] in the non-perturbative
regime for specific problems. In the weak coupling limit,
transitions between instantaneous energy levels Ej(s) >
Ei(s) are governed by Fermi’s Golden Rule rate Γij :

Γij(s) ∝
∑
k,α

|〈Ei(s)|σαk |Ej(s)〉|2
g2α

1− exp(−β|Ei(s)− Ej(s)|)
,

(2)
where gα is the environment coupling strength to the
α = x, y, z component of the system spins, and σαk is the
α Pauli operator acting on the k-th spin.

The explanation of freeze-out in this picture is that as
s → 1, energy gaps |Ei − Ej | open up, as well as the
matrix elements 〈Ei(s)|σz|Ej(s)〉 → 0 (which is typically
the dominant environment-spin coupling [20, 21]) as the
Hamiltonian becomes more diagonal in the z-basis, thus
the transition rates dramatically slow down late in the
anneal. Therefore, the two strongest (possibly compet-
ing) effects determining the relaxation rate Eq. (2) are
the instantaneous energy gap, and Q(s) (via the matrix
element).

An extensive analysis of this conjecture was carried
out in Ref. [9], which indeed found evidence for this phe-
nomena, however many new questions were opened up.
In particular, whilst some problems were shown to have
a well defined freeze-out point late in the anneal, the
majority of problems tested did not, and little could be
said about these problems. Some possibilities include
susceptibility to analog control error noise (errors in the
analog programming of the coupling strengths Jij), dif-
ferent parts of the problem freezing out at different points
(hence no single well defined s∗ exists), and different
types of noise source affecting the experimental device.

With the possibility to pause the system during in-
termediate times, unprecedented insights into the effect
of thermalization can be gained. We illustrate some of
the key time-scales involved in open system annealing in
Fig. 4.
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FIG. 4. A cartoon example showing the various relevant time-
scales involved in a quantum annealer with coupling to a ther-
mal bath. We indicate the thermal relaxation time-scale tr
(i.e. related to the inverse of Eq. (2)) by the blue solid line,
the system time-scale, ta, by the red (horizontal) solid line,
and the pause time scale, tp, by the black dash line [22]. The
relaxation time scale is shortest around the location of the
minimum gap of the problem (e.g. around s = 0.44 in this
example), and it quickly diverges exponentially as the gap
opens up. We show four characteristic regions during the
anneal. 1) [yellow] at early times, when the ground state is
separated by a large gap from any excited state, and the pop-
ulation in the ground state is approximately 1. 2) [green]
As the energy gap closes, and the relaxation rate increases
rapidly, thermal excitations may occur. 3) [purple] As the
energy gaps open up, the relaxation time scale increases (ex-
ponentially). Once tr > ta instantaneous thermalization can
no longer occur effectively. This point corresponds approxi-
mately to the freeze-out point. If however tr < tp, a pause
may allow effective thermalization, which could lead to a sig-
nificantly larger population in the ground state. We indicate
the transition region (where tr ≈ tp) by soptp (see main text).
Finally, in region 4) [blue], where tr is the longest time scale,
very little population transfer will occur (even if one pauses
the system for time tp). The dynamics are effectively frozen.

II. RESULTS

Throughout this work we typically considered prob-
lems of two different types. 1) When wanting to study
large problems (such as the I800 instance of Fig. 5) we
work with problems of the planted-solution type [23],
due to the ability to know in advance the general an-
alytic form of the spectrum of Hp, including the ground
state (as well as certain information about the degener-
acy of the energy levels [9]). 2) When analyzing spectral
properties of the full Hamiltonian, H(s), we used (small)
problems where the Jij ∈ [−1, 1] (uniformly random). In
both cases, we used zero local fields hi = 0.

While problems with local fields or large ferromagnetic
structure (e.g. embedded problems) could benefit from
specific analysis, we expect that the general results and

arguments presented will be generalizable to a large range
of problem sets.

A. Forward annealing with a pause

We consider the following simple adaptation to the
standard annealing schedule. Allow the system to run as
normal to some (re-scaled) time sp ∈ [0, 1], upon which
we pause the system for time tp ∈ [0, 2000]µs, after which
we continue the evolution as per normal.

We observe that this dramatically effects the samples
returned from the D-Wave device, as demonstrated in
Fig. 5. In particular, almost all problems we tested ex-
hibit a strong peak in the success probability when a
pause is inserted into the regular annealing schedule.
The corresponding average energy returned is also sig-
nificantly reduced. We define the ‘optimal pause point’,
soptp , as the point in the anneal for which a pause returns
the lowest average energy returned from many samples
[24] (just after sp = 0.4 in this example).

Moreover, the longer the pause, the greater the in-
crease in the success probability, as shown in Fig. 6.
Here we see that the success probability, for a pause
at re-scaled time sp = 0.44, increases from the base-
line (≈ 0.01%) to over 10% for pause times longer than
around 500µs, and approaches 20% as the pause time
approaches 2000µs (the longest allowable pause time on
the D-Wave device), although saturating around 1ms (in
the logarithmic regime). That is, an increase of around
three orders of magnitude. This gives us new insight into
the time-scales involved in these devices. It shows that
even a 10µs pause (inserted within a default schedule
with ta = 1µs) can dramatically effect the nature of the
samples returned from the device.

These observations are consistent with the thermaliza-
tion picture mentioned in the previous section, and the
cartoon in Fig. 4; we attribute the purple region in Fig. 4
to the region where the huge spike in success probability
is observed, since the system can effectively relax back
to the low lying energy levels on a time-scale comparable
with the pause length. After this (e.g. the blue region
in Fig. 4), the effect is much weaker (dropping off expo-
nentially) as the relaxation time scale increases (notice
in Fig. 5 that late in the anneal, the relative increase
in success probability is much less, or non-existent, as
compared to during the region around sp = 0.4).

We observe similar phenomena for the second problem
class we study (with Jij ∈ [−1, 1]), as in Figs. 7,8. In
these figures we show the effect of changing the pause
time, and the anneal time respectively. In the Sect. II C
we will relate this to the minimum gap (which can be
computed exactly for these problems).

An effect we observe upon increasing the pause time is
that the width of the peak increases, as shown in Fig. 7.
Notice that in this figure all curves start to show an in-
crease in success probability at the same pause point sp
(just after 0.4), but come back to the baseline probability
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FIG. 5. Forward annealing with a pause for a single 800 qubit
(planted-solution) problem instance (I800). The top figure
shows the success probability with respect to pause time tp,
and the location of the pause sp. The total evolution time
(aside from the pause) is 1µs. The corresponding bottom
figure shows the average energy (in arbitrary units) returned
by the device. Each data point is averaged from 10000 anneals
with 5 different choice of gauge. In the absence of a pause,
P0 ≈ 10−4.

at later points for longer pause times. That is, the region
of interest is slightly extended to the right. This also fits
in with the model discussed in Sect. I C and the cartoon
picture Fig. 4, where increasing tp increases the size of
the purple region by extending it to the right (i.e. the
region where ta < tr < tp). The location of the peak soptp

we posit to be around the point when tr ≈ tp (i.e. the
interface of the blue and purple regions in Fig. 4), the
last point in the anneal for which thermalization can ef-
fectively occur during a pause of length tp. Indeed we ex-
perimentally observe (in Fig. 7) that increasing the pause
time shifts the peak to later in the anneal (and also in-
creases in size in accordance with this picture [25]).

If one instead increases the anneal time, the peak nar-
rows (and flattens), and eventually disappears, as ob-
served in Fig. 8. Note, in accordance with Fig. 4, the
location of soptp does not change upon increasing ta (since
this should reduce the size of the purple region from the

FIG. 6. Dependence of success probability P0 on pause length
tp, for the same problem considered from Fig. 5 (I800), where
we fix sp = 0.44 (corresponding to the peak in Fig. 5). We
see increasing the pause length corresponds to a larger success
probability (although it mostly saturates around 500µs). In
the absence of a pause the success probability is P0 ≈ 10−4,
which increases by several orders of magnitude to around 20%.
Red solid line is linear fit to tail end (tp > 101.5µs) Inset:
Same as main figure, but with linear scale on tp-axis. Each
data point is averaged from 10000 anneals with 5 different
choice of gauge.

FIG. 7. Effect of changing the pause time for a 12 qubit prob-
lem instance (I012). Each data point is from 10000 annealing
runs using 5 different gauges. The anneal time ta = 1µs for
all data sets shown.

left). We also show a corresponding heat map of this
effect in Appendix D (Fig. 25).

It is remarkable that the peak is extremely well de-
fined, occurs in such a concentrated region, and exists
for almost all problems we studied (the only exception
being some small qubit instances, which we discuss be-
low). For problems of the planted-solution type, there
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FIG. 8. Effect of changing the anneal time for I012. Each data
point is from 10000 annealing runs using 5 different gauges.
The anneal time tp = 100µs for all data sets shown.

seems to be little dependence on problem size for the po-
sition of this peak. We demonstrate this in Fig. 9 where
we see the optimal pause point, soptp , does not vary much
with problem size, and in addition, the deviation (i.e.,
the error bars in the figure) in the samples is more or
less constant. For problems which are generated with
Jij ∈ [−1, 1] (uniformly random), we see a mild effect
with increasing problem size, where the optimal pause
point seems to decrease, and concentrate in location (i.e.
the error bars in the figure are decreasing with problem
size). This effect would presumably saturate with large
enough N (note, in the figure, SL=16 is the largest pos-
sible problem size available).

The simple observations demonstrated here show that
one may be able to design more efficient annealing sched-
ules by annealing very quickly, and pausing for a rela-
tively short time, as compared to running the default
annealing schedule for a long time. Moreover in Fig. 10,
we see the width of the peak only depends very weakly
(or not at all) on the problem size; this suggests that for
most problems, regardless of size, there is a fairly large
window in which one can pause and observe an increase
in success probability.

B. Reverse annealing with a pause

Before proceeding with a statistical analysis we briefly
present some relevant results using the reverse annealing
protocol, with a pause, the general protocol of which is
demonstrated graphically in Fig. 3. This allows us to
identify some of the key regions during an anneal, which,
as explained above, depend on the ratios of the various
energy scales involved and associated time-scales.

We show some of our findings in Fig. 11 where we iden-
tify 4 regions of interest. 1) sp < sgap. The system has
been evolved (from s = 1) past the minimum gap, and

FIG. 9. The optimal pause point soptp as a function of prob-
lem size, for two different problem classes (see legend). The
problems were generated on a square subgraph of the chimera
with ‘side-length’ SL, consisting of SL×SL unit cells each
containing 8 qubits (e.g. see Fig. 2 in Ref. [9]). Each SL
shown [4, 8, 12, 16] corresponds to (taking account for dead
qubits) N = [127, 507, 1141, 2031] respectively. Each data
point shown is an average over (at least) 50 instances. Er-
ror bars represent the standard deviation. Each instance (for
each sp tested) is averaged from 10000 anneals with 5 differ-
ent choice of gauge, with ta = 1µs (not including the pause
time), and tp = 100µs.

been paused at a point where Q > O(1), allowing for
mixing between energy levels in the computational ba-
sis. There is no memory of the initial configuration. 2)
In the region just after the minimum gap, up to around
soptp , where the lowest energy solutions are found, and
corresponding to the purple region in Fig. 4. Here there
is no memory of the initial state, and no clear differ-
ence between forward and reverse annealing. We expect
thermalization is able to occur effectively on times scales
comparable with tp, i.e., the transition rates between en-
ergy levels Γij ≥ 1/tp. 3) After soptp , where there is a clear
difference between forward annealing and reverse anneal-
ing, there is ‘memory’ of the initial configuration. Thus
the state returned by the annealer at s = 1 depends heav-
ily on the system state at the pause point sp suggesting
different time-scales and transition rates are important
here. In this region, as Q → 0 and 〈Ei|σz|Ej〉 → 0, the
gx,y couplings may play more of a role, leading to qual-
itatively different thermalization mechanisms and time-
scales. Here some transition rates Γij may be comparable
to 1/tp, whereas others much less. 4) Very late in the an-
neal, with Q � C � 1, almost no dynamics occur (the
state returned from the annealer is almost always the
same as the one initialized), i.e. Γij � 1/tp.

We mention that these general observations seem to be
fairly generic, and not specific to this particular example.
With this in mind, we proceed with a statistical analy-
sis, demonstrating to what extent the picture outlined in
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FIG. 10. The width of the peak on a graph of |〈E〉| Vs. sp, as
a function of problem size. The ‘full-width-at-half-maximum’
(FWHM) is the width of the peak in the energy curve |〈E〉|
as a function of sp, at (|E(soptp )|+ |EBG|)/2 where EBG is the
background average energy (i.e., the average energy returned
from the annealer in the absence of a pause), and E(soptp ) the
(mean) energy returned by the annealer at the optimal pause
point. Note, modulus is used since all energies observed neg-
ative. The problems (same as in Fig. 9) were generated on
a square subgraph of the chimera with ‘side-length’ SL, con-
sisting of SL×SL unit cells each containing 8 qubits (e.g. see
Fig. 2 in Ref. [9]). Each SL shown [4, 8, 12, 16] corresponds
to (taking account for dead qubits) N = [127, 507, 1141, 2031]
respectively. Each data point shown is an average over (at
least) 50 instances. Error bars represent the standard devi-
ation. Each instance (for each sp tested) is averaged from
10000 anneals with 5 different choice of gauge, with ta = 1µs
(not including the pause time), and tp = 100µs.

Fig. 4 holds.

C. Correlation with the minimum gap

Typical folklore of (open system) quantum annealing
dictates that around the location of the minimum gap,
thermal excitations from the ground state to excited en-
ergy levels may occur, and that after the gap, thermal
relaxation will allow some of the excited population to
fall back to the ground state [26] (of course, this is heav-
ily dependent on the nature of the minimum gap, and
hence on Hp itself, as well as the temperature and anneal-
ing schedule). This general idea is also demonstrated in
Fig. 4. This framework would suggest that a pause in the
annealing schedule some (problem dependent) time after
the minimum gap may lead to an increase in the success
probability (that is, the population in the ground state
at time s = 1).

Working with 12 qubit problems with Jij ∈ [−1, 1]
(uniformly random), we indeed find such a correlation
between the location of the minimum gap, and the opti-
mal pause point, soptp , where for over 90 of the 100 prob-

FIG. 11. Reverse annealing with pause at sp (solid lines), for a
four different initial configurations for a 12 qubit problem I012.
We plot the average energy (arbitrary units) returned from
5000 anneals, evolved at rate ds/dt = 1µs−1, and tp = 100µs.
We consider ground and first excited state configurations, as
well as two highly excited energy levels. The energy level
Ei is indicated on the right hand side. We also show the
corresponding forward anneal curve (black-dash line). This
problem has a minimum gap at s = 0.44 indicated in the
figure. Note a sample of the spectrum for this problem is
shown in Fig. 21 in Appendix A.

lems tested the best place to pause is after the minimum
gap. This is demonstrated in Fig. 12, where on average
soptp ≈ sgap + 0.14.

We comment briefly on the few outliers (e.g. with
sgap < soptp ) in the data set. For some of these small
12 qubit problems, they are solved almost 100% of the
time by the D-Wave (i.e. they are extremely easy opti-
mization problems). These are problems that have large
minimum gaps ∆min > 1GHz, and we indicate them in
red in the plot (also see Fig. 24 in Appendix D). For these
instances, we typically do not observe a well defined op-
timal pause point; since the gap is so large for all s, we
expect very little thermal excitation to occur at all, hence
pausing has little effect. We see these red points have a
fairly random spread in the soptp -axis.

The second set of outliers are (some of the) instances
which have minimum gaps relatively late in the anneal.
A possible explanation of this is that again, some of these
problems do not have well defined optimal pause points.
If the minimum gap is late in the anneal, when Q(sgap)
is small, the transition time scale tr may already be too
large for effective thermalization to occur during a pause
(i.e. the pause has little effect). We mention this is
heavily dependent on the problem itself, since the transi-
tion rates depend on the spectrum and eigenstates of the
problem (see Eq. (2)), and expect this is why it seems
to only be an issue for a few instances. Nevertheless,
the overall trend is clear, with the manjority of problem
instances exhibiting an optimal pause point in a small
region shortly after the location of the minimum gap.
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FIG. 12. Correlation between the location of the minimum
gap, sgap, and the optimal pause point soptp for 100 problems
of size 12 qubits. These problems have Jij ∈ [−1, 1] (uni-
formly random) and hi = 0. We divided the data into two
groups based on their minimum gap ∆min (see legend), and
we also indicate by the dash-dot (vertical) line the location
corresponding to Q(sgap) = 0.1. We fixed the pause time
to tp = 1000µs, and total anneal time (excluding the pause)
to ta = 1µs. Data from the D-Wave is averaged over 10000
anneals, with 10 different choices of gauge.

We similarly study the same problems where we re-
scale the problem Hamiltonian by a constant factor
(2,4,8). This has two effects; 1) it shifts the location
of the minimum gap to later in the anneal, and it also
reduces the size of the minimum gap (as an explicit ex-
ample, see Fig. 26 in Appendix D). We indeed see that
correspondingly, the location of the optimal pause point
shifts to later in the anneal (see inset of Fig. 13). We
show this explicitly for a single problem in Fig. 27 in
Appendix D.

Interestingly, we also observe that the location of soptp

concentrates (thus becoming less correlated with sgap)
upon reducing the energy range of the problem; notice
how in Fig. 13, the purple points (Hp/8) are almost per-
fectly aligned close to soptp = 0.8. We also see this by
noting that the error bars (standard deviation) in the
soptp -axis decrease (inset of figure).

We explain this by pointing out that by dividing Hp

by a large enough factor, βω01(s) < 1 for s > sgap where
ω01(s) := E1(s) − E0(s) is the gap between the ground
and first excited state, and β the inverse temperature
of the device. This implies the system should be able
to effectively thermalize until very late in the anneal,
until the matrix elements in Eq. (2) become small enough
(determined by Q being small enough). This means the
freeze-out point (i.e. start of the purple region in Fig. 4)

FIG. 13. Effect of reducing problem energy scale (for the
same 100 problems studied in Fig. 12). We divde the problem
Hamiltonian Hp by 1,2,4,8 (see legend). Inset: Mean data
point for each group of 100 instances upon dividing Hp by
1,2,4,8 (see legend). Dash-dot line is least squares fitting to
the median data point. Error bars are the standard deviation.

is not determined so much by the problem itself (i.e. the
exact spectrum as a function of s), but the annealing
schedule (i.e. Q(s)). Thus different problems may exhibit
very similar optimal pause points.

It would be worth while to explore this in more detail
to confirm this hypothesis.

D. Quantum Boltzmann distribution

For a set of 10 problem instances of size 12 qubits
I0−912 (each with well defined optimal pause points, with
∆min < 1GHz, Q(sgap) > 0.1) with Jij ∈ [−1, 1] (uni-
formly random), we compare the returned D-Wave statis-
tics to the instantaneous quantum Boltzmann distribu-
tion ρ ∼ exp(−βH(s)) (projected to the z-eigenbasis),
for various choices of β; we vary the temperature T
from 1

4TDW to 4TDW, in increments of 1
4TDW (where

TDW = 12.1mK is the operating temperature of the de-
vice). We outline these calculations in Appendix B.

We study these problems, with a very long pause time
of tp = 1000µs to allow for enough time to thermalize,
and run with short anneal time (excluding pause time)
ta = 1µs (i.e. the quickest possible time, so that we can
try to isolate the effect of the pause).

An example of this analysis for a single instance is
shown in Fig. 14, however we note the pattern looks much
the same for all of the instances studied (see Fig. 15).
Here we focus on the distribution returned from the de-
vice with a pause at the optimal pause point soptp , and
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compare this to a distribution of the form exp(−βH(s)).
We observe that the D-Wave distribution is best de-

scribed by a hotter Boltzmann distribution, at a later
point in the anneal than the optimal pause point. In
particular for these problems the optimal parameters
(s∗, T ∗) such that DKL is minimized, correspond to s∗ =
0.78±0.10 and T ∗ = 26.1±8.8mK (and up to 4 times the
physical temperature). Moreover, s∗− soptp = 0.21± 0.11
(i.e. significantly later in the anneal than the optimal
pause point). At values of s∗ this late in the anneal
(with Q(s∗) ≈ 10−3), the distribution is indeed effec-
tively a classical Boltzmann distribution (of Hp); that is,

exp(−β̃Hp), where β̃ is an effective inverse temperature
(one which is typically hotter than TDW).

This result is somewhat confusing. For one, the tem-
peratures seem to vary wildly between instances as seen
in Fig. 15, and moreover, it suggests that non-trivial
dynamics can occur well past the optimal pause point.
Since we expect the region around the optimal pause
point to correspond approximately to the freeze-out point
(i.e. the region where the system time-scale is short com-
pared to the thermal time-scale), we would expect to see
a closer match between s∗ and soptp .

We conjecture that after the optimal pause point non-
trival dynamics do indeed still occur. The intermedi-
ate pause helps the D-Wave distribution equilibriate to
the instantaneous thermal distribution, and after this,
although the thermal transition rate is too small to ther-
malize effectively (even with a pause), some dynamics
will inevitably occur (recall, the minimum annealing time
scale is 1µs). It is possible therefore that the distribu-
tion one eventually measures is not quite a projection of
a Boltzmann distribution at a well defined (s, T ).

We partly validate this picture in Fig. 16 comparing
the D-Wave distribution of a single instance to the opti-
mal found over all (s, T ) in exp(−βH(s)). This problem
fits best to a Boltzmann distribution with optimal val-
ues (s∗, T ∗) = (0.76, 18.5mK). We plot on a logarithmic
scale to show the similarity to a classical Boltzmann dis-
tribution of Hp, for which ln pi

gi
= −β̃Ei − lnZ (i.e. a

straight line on this graph). This late in the anneal we
expect the Boltzmann distribution to be approximately
of the form exp(−β̃Hp) for some appropriate β̃, since
Q(s∗) < 10−2. Also note that Q(soptp ) = 0.07, so this is
not an unreasonable assumption even for instantaneous
thermalization at the optimal pause point.

We notice that indeed, both the experimental data and
the computed Boltzmann distribution seem to fit reason-
ably well to a linear fit (indicating classical thermaliza-
tion is occurring to some extent), but also mention it is
not clear whether the two distributions correspond to one
and the same; there are clearly some large divergences
(the y axis is a logarithmic scale).

It is also interesting to note that in the absence of
a pause we do not see any clear correspondence be-
tween the D-Wave distribution and a Boltzmann distri-
bution. For example, for the distribution returned from
an anneal with pause at soptp , the minimum KL diver-

FIG. 14. KL divergence DKL between data from D-Wave
PDW and the Boltzmann distribution PQBM (projected into
the computational basis) for various choices of (s, T ), for a
single 12 qubit instance (I112). The D-Wave data is sampled
from a pause of length tp = 1000µs at soptp , with ta = 1µs
(from 10000 anneals and 10 choices of gauge). We indicate
in the plot three key parameters; the physical temperature
TDW = 12.1mK, the location of the minimum gap sgap, and
the optimal pause point soptp . The white diamond corresponds

to the minimum value of DKL over all (s, T ), and is equal to
DKL

min = 0.01 bits of information. Note, to be able to distin-
guish the features in the plot, we set the upper limit on the
plot to be DKL = 0.2 (any value above this is mapped to this
color).

FIG. 15. For the 10 problems described in the main text
(I0−9

12 ), we plot the values (s∗, T ∗) (relative to soptp ) which

correspond to the minimum value of DKL over all choices of
(s, T ) tested. We see the same trend for all of the problems, as
observed directly in Fig. 14, where larger s∗ implies larger T ∗.
Note in the plot, two of the data points lie on top of each other.
The mean optimal KL-divergence found for these problems
was DKL

min = 0.016± 0.015. Note, TDW = 12.1± 1.4mK.
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FIG. 16. Comparison of the D-Wave probability distri-
bution and the closest fit (as measured by KL-divergence)
to a quantum Boltzmann (QBM) distribution of the form
exp(−βH(s)), where the fit is over the parameters (s, T )
for I212. Optimal values for this problem are (s∗, T ∗) =
(0.76, 18.5mK), and soptp = 0.59. Here pi is the probability
of observing a configuration with energy Ei, and gi is the de-
generacy of that energy level. The solid and dash-dot lines
are least-squares fitting to the D-Wave data and the QBM
data respectively. D-Wave data taken at the optimal pause
point for this problem, from 10000 anneals (10 gauges), with
ta = 1µs, tp = 1000µs.

gence is DKL
min = 0.016 ± 0.015 (and DKL(soptp , TDW) =

0.076 ± 0.065). However, performing the same analysis
with an anneal with no pause, the values vary wildly, with
DKL

min = 0.19± 0.15. That is (over the range of (s, T ) for
which we computed exp(−βH(s))) there is typically no
good choice of (s, T ), and it is not clear what the distri-
bution is.

If the system is not able to thermalize appropriately
during the anneal (e.g. because the anneal time ta is too
quick), there is no expectation for the D-Wave distribu-
tion to be close to any Boltzmann distribution.

With this in mind, though we have provided evidence
suggesting thermalization is occurring to some extent in
these problems, more work is required to understand pre-
cisely the distribution one is sampling from at the opti-
mal pause point. In particular, we would like to better
understand why the fitting temperature seems to vary
so much between these instances, and why the dynam-
ics seem to occur so long after the optimal pause point.
The main constraint in our experiments prohibiting us
to probe these details further is the maximum anneal-
ing rate ds

dt which is limited to 1µs−1 on the present de-
vice. That is, even though we hope to be approximately
quenching the system from after the optimal pause point
(i.e. measuring in the middle of the anneal), in reality
there is still plenty of time for dynamics to occur until
measurement at s = 1.

We provide some more intriguing evidence in the next

section, where we focus on a set of (large-scale) problem
instances which indeed seem to exhibit classical thermal-
ization (i.e. thermalization to a Boltzmann distribution
of Hp).

E. Classical Boltzmann distribution

Whether or not the device samples from a classical
Boltzmann distribution at some point s∗ late in the an-
neal is a hotly contested issue [4–7, 9]. If problems for
which machine learning is applicable (e.g. in the re-
stricted Boltzmann machine paradigm) freeze-out at a
point late in the anneal, when Q� 1, then these devices
may show an advantage over classical samplers (sampling
from a Boltzmann distribution is NP-hard) [5, 6, 8].

With the advent of a new entropic sampling technique
based on population annealing [27], we were able to accu-
rately estimate the degeneracies for 225 planted-solution
type instances containing 501 qubits (that is the esti-
mated ground and first excited state degeneracies are
within 5% of the known values found by planting). For
more information on these techniques see Refs. [9, 27],
and Appendix C. Due to the large size of these problems,
we are of course not able to compute the Boltzmann dis-
tribution of the full Hamiltonian H(s) as we did in the
previous section.

However, having accurate values for the degeneracies
allows us to calculate the classical (problem Hamilto-

nian) Boltzmann distribution ρ ∼ exp(−β̃Hp), where β̃
is an effective inverse temperature, i.e., a fitting parame-
ter, which depends on the physical temperature, and the
strength problem Hamiltonian B (and in principle any-
thing else effecting the distribution returned from the
device such as various noise sources).

If the distribution returned from the D-Wave is in-
deed a classical Boltzmann distribution at freeze-out
point s∗ late in the anneal (when Q(s∗) � 1), then one
would expect (ignoring any other noise sources) to find

β̃ = βB(s∗)/Jmax, where β = 1/kBT is the physical
inverse temperature, B(s∗) is the problem Hamiltonian
strength at the freeze-out point, and Jmax = max |Jij |
is a normalization parameter (since the Jij programmed
into the quantum annealer are restricted to the range
[−1, 1]).

We make two key observations. 1) all of these prob-
lems tested exhibit a strong peak in the success prob-
ability in a fairly narrow region soptp ∈ [0.35, 0.46] (i.e.,
much less varied than the small 12 qubit instances stud-
ied above). 2) The data returned from D-Wave, for all of
these problems, matches very closely to a classical Boltz-
mann distribution, but at a higher temperature than the
operating temperature of the device (at least 1.5 times
higher). This is in accordance with the results of Ref. [9]
where calculated freeze-out points for most large prob-
lems were very early in the annealing schedule (equiva-
lent to a higher than expected temperature), although
in this work, a pause during the anneal to more directly
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FIG. 17. Fitting experimental data to linear fit for a single
500 qubit instance (I500). We show data for three different
pause points (and from the standard annealing schedule). We
see the standard schedule is almost indistinguishable from
the case where the anneal is paused at s = 0.2, 0.8 (slope

β̃ ≈ 0.35), however, when pausing at s = soptp = 0.44 for this
instance, we see a change in the distribution returned (pur-

ple, with slope β̃ = 0.44). We also plot the corresponding
classical Boltzmann distribution expected (black-dash line) if
the system were thermalizing to Hp at s∗ = soptp , at tem-

perature 12.1mK (with slope β̃ = 0.61). Note, freeze-out at

s∗ = 1 would give β̃ = 2.52. Inset: Average energy returned
by D-Wave as a function of pause point for the same instance.
The curve has a minimum value at soptp = 0.44. Experimental
data obtained from 10000 anneals with 5 choices of gauge,
with ta = 1µs, and tp = 100µs.

study thermalization was not available. We demonstrate
these points below.

First consider Fig. 17 where for a single instance we
plot ln pi

gi
against Ei, where pi is the probability of ob-

serving a configuration with energy Ei, and gi is the de-
generacy of that energy level. One can see the data re-
turned from D-Wave corresponds very closely to a linear
fit (in fact, for all problems, and all pause points sp, we
find the R2 (coefficient of determination) value is greater
than 0.97, and up to 0.9999). That is, the data from D-

Wave seems to fit to pi = gi
Z e
−β̃Ei , for some constants Z,

and β̃ (which can be determined by least-squares fitting).

Though the results are very clear, the correct in-
terpretation of them is not. For example, if we ob-
tain the effective inverse temperature of the distribu-
tion β̃ from the least squares fitting, and set it equal
to β̃ = βB(s∗)/Jmax, with knowledge of β = 1/kBT , and
Jmax, we can calculate B(s∗). If one does this however,
the value returned corresponds to an extremely early
point during the anneal, even earlier than soptp (e.g. with
Q ≈ 1, or equivalently s ≈ 0.35). If one however assumes
the thermalization picture presented in Sect. I C, which
suggests freeze-out should occur when the relaxation time
scale is longer than the system time scale, i.e. approxi-

mately around the optimal pause point, soptp = 0.42±0.01
for these problems, the temperature required for the fit
is > 1.5 times higher than the physical temperature
T = 19.8± 1.1mK (compared to TDW = 12.1± 1.4mK).

It is however not clear whether exp(−βH(s∗)) with
s∗ = 0.42 and Q(s∗) ≈ 0.5 would indeed correspond to
a classical Boltzmann distribution (of Hp) since the off
diagonal driver is still relatively strong in magnitude. In-
deed, this is a somewhat similar result as from the pre-
vious section where we observed the optimal parameter
value for s was in fact slightly after soptp (and T larger
than the physical temperature). If there are in-fact still
dynamics after soptp , the freeze-out point will be some-
what later in the anneal (when Q(s) is smaller), and the
associated temperature of the fit will be larger. We dis-
cuss some implications of this in the next section. For
now we compare the samples from the optimal pause
point to those from outside of it.

In Fig. 18 we plot the R2 value found by the least
squares fitting for a typical instance as a function of pause
point sp. We see that the peak corresponds closely to the
optimal pause point under the pause. Moreover, we see a
very similar trend for all of the problems we tested, with
the pause point for which the largest R2 value is observed
differing by at most 3% of the annealing schedule from
the optimal pause point; smax

R2 = soptp ± 0.03. This indi-
cates that the data returned from a pause at this critical
point, fits better to a classical Boltzmann distribution,
as compared to the rest of the data (or indeed, from the
distribution returned in the absence of a pause in the
schedule). If indeed the problems are thermalizing to a
classical Boltzmann distribution, this work shows that by
pausing the anneal at a particular (instance-dependent)
point allows a more complete thermalization to occur.
This result is similar to that found in the previous sec-
tion.

We performed a similar analysis for three other prob-
lem sizes (N = 31, 125, 282 qubits), and find that in-
creasing the problem size in general increases the mean
R2 value for a fit to a classical Boltzmann distribution.
For N = 31, 125, 282, 501, the corresponding values are
〈R2〉 = 0.911, 0.994, 0.995, 0.997, where the average (me-
dian) is over all instances and all pause points sp tested.
Moreover, the correlation between soptp and smax

R2 seems
to also increase with problem size, as demonstrated in
Fig. 19, which shows the variation between different in-
stances decreases with problem size, and seems to suggest
that soptp ≈ smax

R2 , for large N (i.e., the optimal pause
point and the pause location for which the best fit to
a Boltzmann distribution is observed, coincide for large
problems).

In the next section we will sum up all of our results,
and provide an interpretation of these slightly muddling
findings.
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FIG. 18. Quantifying accuracy of linear regression using R2

for ln pi
gi

as a function of Ei (as demonstrated in Fig. 17)

for a single 500 qubit instance (I500). For each data point
shown, we obtain a least-squares fitting from the distribution
returned by D-Wave, from which we calculate the R2 value.
The solid line (red, right-axis) is the average energy returned
from the D-Wave. We see the peak in R2 corresponds to the
region around soptp (just after sp = 0.4). Each data point is
obtained from 10000 anneals with 5 choices of gauge, with
ta = 1µs, and tp = 100µs.

FIG. 19. Average difference between the pause point sp for
which the maximal R2 value is found (i.e., the closest to a
Boltzmann distribution), and the optimal pause point, with
problem size. The problems are defined on square sub-graphs
of the full D-Wave chimera with side-length SL. The cor-
rosponding number of qubits is given in the legend. The data
points are an average of (at least) 55 instances each. Error
bars represent standard deviation. To collect our data we
used 10000 anneals with 5 choices of gauge, with ta = 1µs,
and tp = 100µs.

III. SUMMARY OF RESULTS

By using a simple adaptation to the standard anneal-
ing schedule, in which we pause the anneal for a certain
time, we studied key mechanisms affecting the output of
experimental quantum annealing devices.

We observed that there is very often a critical region
during the anneal for which if one pauses, even for a
relatively short time (say 10µs), a drastically different
distribution of solutions is returned from the device. In
particular, it seems to more effectively sample low lying
energy states in this region, resulting in a larger prob-
ability of success (probability of observing the ground
state).

We are not able to explain this effect in the closed-
system scenario, as discussed in Appendix A, and demon-
strate that it is most likely related to thermalization, al-
though we have raised several questions which require
dedicated experiments to test further.

We studied two problem sets. The first set, small 12
qubit instances, with Jij ∈ [−1, 1], hi = 0 (uniformly ran-
dom), was used to demonstrate a correlation between the
location of the minimum gap, and the location of the so-
called optimal pause point (i.e., the point in the anneal
for which a pause returns the largest success probability,
or lowest average energy of the configurations). It was
observed that the best place to pause the system is some
time after the minimum gap (numerically we found for
these instances, the best place was around 10-15% of the
total anneal time later). This observation is in agree-
ment with other experiments and theory [17, 26] which
suggests that after the minimum gap – where thermal
excitations may allow a significant fraction of the popu-
lation to leave the ground state – population can begin
to thermally relax back into the ground state. We men-
tion this picture also explains the sharp-peaked nature
of our observations; if one pauses just a little too late,
since the transition rates depend exponentially on the
size of the instantaneous energy gaps [17], they quickly
drop off, and the pause time becomes too small for ef-
fective thermalization to occur. The exact nature of this
depends heavily on the spectrum of each individual in-
stance, since this determines the transition rates.

For a subset of these problems, we compared the
distribution returned from the device with a pause at
soptp to a quantum Boltzmann distribution of the form
exp(−βH(s)), treating T = kB/β and s as fitting param-
eters. We found that the optimal values of (s, T ) were
such that s was actually significantly later (e.g. 20% of
ta) in the schedule compared to soptp , and that the tem-
perature fluctuated wildly between instances, and was
much higher than the physical temperature (up to 4 times
higher). The interpretation of this is not quite clear,
since, according to the thermalization picture painted
above, the region of the optimal pause point should corre-
spond approximately to the freezing region, after which
transitions between energy levels stop. Moreover, the
fluctuating temperatures do not seem consistent with the
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physical temperature fluctuations on the device.

It is therefore still not clear whether the sampling is
from a Boltzmann distribution of this form when paus-
ing at the optimal pause point. We mention it is also
not clear whether we would even expect it to, since, even
ignoring possible analog errors which are known to ef-
fect the output of such devices, the minimum annealing
rate of 1µs−1 in principle allows for the distribution to
change non-negligibly from directly after the pause until
measurement at the end of the anneal (even if the ther-
mal time-scale after the pause is large, if Q(s) is non-
negligible, internal dynamics may still play a role). So
whilst our data does seem to fit to a Boltzmann dis-
tribution, the fact that some dynamics still occur may
cause the parameters of the fit to be slightly different
from what one would otherwise expect, making it tricky
to correctly interpret. It is clear more work is required
to explain these observations.

With the advent of a new entropic sampling algorithm
[27], we were able to obtain accurate degeneracy esti-
mates for large – 500 qubit – problems of the planted-
solution type. This allowed us to compare the samples
returned from the device to a classical Boltzmann distri-
bution (i.e., arising from thermal sampling of the problem
Hamiltonian). Remarkably, we found that for all samples
tested, that the data does fit extremely well to a Boltz-
mann distribution of the problem Hamiltonian, with R2

values up to 0.9999 (and always larger than 0.97). More-
over, we observed that for all problems, the distribution
returned by an anneal with a pause at the optimal pause
point corresponds to the best fit to a Boltzmann distri-
bution, indicating these samples are thermalizing more
completely.

We also provide evidence which suggests that the larger
a problem is, the more likely it is to have a ‘good’ fit to a
classical Boltzmann distribution. According to the ther-
malization picture presented in Sect. I C, this suggests
that larger problems in fact freeze-out later in the an-
neal.

This is an intriguing result, and goes beyond what was
found in Ref. [9], where it was shown that if one attempts
to fit the data to a Boltzmann distribution at the physi-
cal temperature of the device, impossibly early freeze-out
points are observed. We find the same here, however, if
one reverses this argument, and fits the data, leaving the
temperature as a free parameter, we find exceptionally
close fits to a Boltzmann distribution (which get better
with problem size).

The difficulty however in interpreting this data is that
the optimal pause point seems slightly too early in the an-
neal to observe a classical Boltzmann distribution (since
Q(soptp ) ≈ 0.5 for these problems), and moreover, the
temperature was at least 1.5 times the physical tempera-
ture (however, the fluctuations in the fitted temperature
were fairly consistent with those on the actual device).
This also suggests there are likely non-negligible dynam-
ics occurring after soptp (i.e. up to a point when Q is
smaller). Taking this picture would then imply the fitted

temperature is even larger than 1.5 times the physical.
Though we can explain to some extent the higher

than observed temperatures (and in principle the fluc-
tuations), some possibilities of which include 1) the mea-
sured temperature of the device not corresponding to the
actual temperature of the qubits, 2) the temperature of
the device changing even during a single anneal, 3) analog
errors (programming errors in the Jij) which masquerade
as a higher observed temperature, it is hard to reconcile,
without further analysis, the fact that we seem to observe
data which fits to a Boltzmann distribution, but one at
a much later point than the optimal pause point.

As we have stressed previously, it would be extremely
useful to be able to perform a more adequate quenching
of the dynamics, that is, allowing for an annealing rate
of much quicker than ds

dt = 1µs−1. Moreover, it would
be useful to have more accurate temperature data (in-
deed, the temperature data is sampled just once every
few hours from the device meaning we can not perform
a ‘real-time’ analysis).

With this in mind we summarize by noting that our
results do indicate thermalization is occurring effectively
in the region of the optimal pause point, however with-
out addressing the two above points, it is challenging to
fully consolidate this picture with the freeze-out conjec-
ture (e.g. from Fig. 4).

IV. CONCLUSION AND OUTLOOK

The work presented here has several practical implica-
tions for quantum annealing. Firstly, it is clear that one
may be able to design more effective annealing schedules
by including a short pause at some intermediate point in
the anneal, possibly allowing for orders of magnitude im-
provement in sampling from the low lying energy states
(i.e., those which are of interest from the point of op-
timization). We demonstrated that across a particular
problem set (even for different problem sizes), the opti-
mal pause point does not seem to change much and that
the size of the region in which one should pause remains
fairly constant, hence good general heuristics may be de-
rived.

In fact, this type of annealing schedule may allow us
to actually learn fundamental properties about the na-
ture of certain problem classes, such as the location of
the minimum gap, which is extremely hard to determine
numerically.

By varying the pause point (at least for ‘large’ prob-
lems of the planted solution type), one can effectively
vary the temperature at which one samples from the clas-
sical Boltzmann distribution. This has implications for
machine learning (for example in the use of restricted
Boltzmann machines) [5, 6, 8]. Of course, one would need
to perform more analysis for different problem types be-
fore this type of sampling can be understood in general.

Having said this, more work is needed to pin down the
exact cause of the phenomena reported here. In particu-
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lar there are two main lingering points. 1) We would like
to more precisely understand the distribution the device
is sampling from at the optimal pause point. To do this,
one would need to be able to more effectively quench the
system; that is, measure the device exactly at an interme-
diate point in the anneal, instead of having to finish the
anneal in a relatively long time of O(1µs), during which
non-trivial dynamics can still occur. This is a hardware
limitation imposed on the current device we performed
our experiments on. 2) It is critical to understand the
role of temperature in these devices. On the one hand,
the device does seem to be sampling from a Boltzmann
distribution (with a pause), however the temperature at
which the samples are returned from are higher than the
physical temperature of the device. Understanding this
will allow more effective quantum devices (not just an-
nealers) to be built, as well as allow for more effective
sampling.

V. DATA ACQUISITION

For all instances labeled as IsN (where N is the qubit
number, and s a serial number when applicable), we pro-

vide the problem instance itself as part of the ancillary
files associated with this article.
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FIG. 20. Comparison between results from the experimental
D-Wave device (top), and a closed-system Schrödinger evo-
lution (bottom) for a single 12 qubit problem instance (I012).
Both plots show the success probability P0 against the pause
point, for two different pause times (tp = 10, 1000µs) as shown
by the legend. The D-Wave data is from 10000 annealing runs,
using 5 different gauges. Each plot contains 1000 data points
evenly distributed in sp ∈ [0, 1]. Both have an annealing time
of ta = 1µs (in addition to the pause time). The simula-
tion uses 1000 time steps in the calculation of the evolution
operator.

Appendix A: Expected closed-system dynamics

We consider the effect of an intermediate pause under
the closed system (Schrödinger) evolution alone, studying
small 12 qubit problems, with Jij ∈ [−1, 1] (uniformly
random) and hi = 0.

It is interesting to note that the effect of pausing the
anneal does have a noticeable effect, as demonstrated in
Fig. 20, even in the closed system case. We believe this is
essentially caused by Rabi oscillations during the pause,
and we note it does not match the observed output from
the D-Wave device. We explain below.

We consider the three regions in Fig. 20 (bottom).
1) During the evolution, when s < 0.2 the state is al-
most entirely in the instantaneous ground state, |ψ(s)〉 ≈
|E0(s)〉. Thus, when the system is paused, and evolved
under H(sp), very little happens since just an overall
global phase is acquired. 2) A little later on, when the

FIG. 21. Spectrum (lowest 10 energy levels) of the problem
considered in Figs. 7, 8, 11, 20 (I012). This problem has a
small, well defined minimum gap of 0.15 GHz located at s =
0.44. The units are defined with h = 1.

energy gap starts to close between s ∈ [0.2, 0.4] (see
Fig. 21), diabatic transitions to excited energy levels may
occur. Once a non-negligible amount of the population
has been transferred to excited states, a pause will give
rise to Rabi oscillations between the eigen-states of Hp,
hence directly affecting the success probability at the end
of the anneal. 3) Late in the anneal, after around s = 0.7,
the driver Hamiltonian is essentially negligible, so can
not drive any transitions between energy levels, hence a
pause, will only change the relative phases of eigen-states
of Hp, but not affect the probabilities upon measurement
in the computational basis.

We describe three fundamental differences between the
simulation, and the results from the experimental device
(in addition to the large difference in success probabil-
ity). Firstly it is evident there is much less structure
in the closed system case; although the success proba-
bility does seem to increase on average, there is much
more variability. This is due to the sensitivity of the
period of the Rabi oscillations to the energy gaps (and
hence to the location of the pause sp). Second, there is
seemingly no qualitative difference between a short and
long pause in the closed system case, as compared to the
observed phenomena which has an increasing peak with
pause time. We believe this is due again to the nature of
the Rabi oscillations. If the gap between energy levels is
of the order of 1 GHz (see Fig. 21), the time-scale of the
Rabi oscillations is much shorter than the pause times
considered here (e.g. 1ns compared with 100µs). Lastly,
the location at which this Rabi dynamics occurs does not
correspond precisely to that observed in the experiment
(it is seemingly shifted slightly earlier in the schedule).

We also plot both data sets on the same axis in Fig. 22
for reference. This shows the Rabi induced oscillations
are effectively negligible compared to the effect observed
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FIG. 22. Same as Fig. 20, but with both data sets on the
same plot. Both data sets correspond to tp = 1000µs, and
ta = 1µs.

on the physical device.

Appendix B: Computing the quantum Boltzmann
distribution

We wish to compare the distribution returned from
the D-Wave device, i.e., the probability that a configura-
tion with energy E is returned PDW(E), to what would
be expected if the device were instantaneously thermal-
izing to the quantum Boltzmann distribution ρ(s, T ) :=
1
Z e
−βH(s), where Z = Tre−βH(s), and β = 1/kBT with

T a temperature parameter.
We note that the D-Wave device can only measure in

the computational (z) basis, thus to compare the proba-
bility distributions we compute

P
(s,T )
QBM(E) =

∑
z :Hp|z〉=E|z〉

〈z|ρ(s, T )|z〉 (B1)

for s ∈ [0, 1] (steps of 0.01), and T ∈ [ 14 , 4]TDW (steps of
1
4TDW).

Appendix C: Computing the classical Boltzmann
distribution for large problems

In Sect. II E we analysed planted-solution type prob-
lems [23], of four different problem sizes, N ∈
{31, 125, 282, 501}. These were (a subset of) the same
instances as studied in Ref. [9], and are generated on sub-
graphs of the full chimera of side-length SL ∈ {2, 4, 6, 8}
respectively. Each N group tested consisted of (at least)
55 problem instances, with a random number of sub-
Hamiltonian loops chosen (as described in more detail
in Ref. [9]).

FIG. 23. The D-Wave 2000Q ‘chimera’ graph which we con-
ducted our experiments on (the device is housed at NASA
Ames Research Center). There are 16 × 16 unit cells each
containing 8 qubits. Dead (malfunctioning) qubits are not
shown on the graph. Top left bordered in red is an example
of a square subgraph of side-length SL= 4.

The benefit to using this problem type is that one
knows in advance the spectrum of Hp, and one can calcu-
late exactly the degeneracy of the ground and first excited
states. The description of this algorithm is outlined in
Ref. [7].

Knowledge of the exact ground and first excited state
degeneracies is extremely powerful as it allows one to ver-
ify any estimated degeneracy values from entropic sam-
pling techniques (such as the well known Wang-Landau
method [28, 29]).

We used a newly devised algorithm for estimating the
density of states based on population-annealing [27] to
obtain accurate estimates of the degeneracies for the
largest instances tested (501 qubits), for which tradi-
tional (e.g. Wang-Landau) approaches failed. Here ‘ac-
curate’ implies neither the ground nor first excited state
degeneracy estimate differed by more than 5% of the ex-
act values. For the 125 and 282 qubit problems we were
able to use the Wang-Landau algorithm to obtain ac-
curate estimates of the degeneracies. For the 31 qubit
instances we used exact enumeration to compute the de-
generacies.

Appendix D: Supplemental figures

In Fig. 23 we show the full (working) D-Wave 2000Q
hardware graph. All of our experiments were conducted
on this graph.
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FIG. 24. Success probability P0 (under the default annealing
schedule with ta = 1µs) as a function of minimum gap ∆min

for the 100 problem instances of size 12 qubits reported on in
the main text. We also plot the operating temperature of the
device (black-dash line). The units are defined with h = 1.
The data is from 10000 anneals with 10 choices of gauge.

In Sect. II C we analysed 100 problems of size 12 qubits

for which Jij ∈ [−1, 1] (uniformly random), and hi =
0. In Fig. 24 we show how the success probability of
these problems depends on the minimum gap ∆min. For
problems for which ∆min is larger than around 1GHz, the
problems are solved with nearly 100% success probability.

In the main text (Sect. II A), one effect we studied was
varying the total anneal time ta, but keeping the pause
time tp constant (e.g. Fig. 8). Here, in Fig. 25 we show
the corresponding heat map (i.e. where tp is also varied
for each choice of ta). One sees that the pause is essen-
tially an efficient way of increasing the success probability
(lowering average energy) without increasing the anneal
time; notice for a short anneal time, ta = 1µs, with a
pause of around 20µs at s ≈ 0.4 gives approximately the
same average energy as an anneal for time of 1ms.

One interesting observation in Sect. II C was that by
dividing the energy scale of the problem Hamiltonian,
Hp → Hp/C for (e.g.) C = 1, 2, 4, 8, was that the peak in
the success probability shifts to later in the anneal. This
was partly due to the minimum gap which shifts to later
in the anneal (see Fig. 26), but we also related this in the
main text to the diminishing quantum fluctuations Q. In
Fig. 27 we show the corresponding heat map for a single
problem instance upon dividing the problem energy scale.
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FIG. 25. Effect of changing the total annealing time (not
including the pause time), ta, for a 500 qubit planted prob-
lem instance (I0500). The heat map color corresponds to the
average energy, 〈E〉 − E0 (arbitrary units) returned from
the annealer. From top to bottom the total anneal time
ta = 1, 10, 100, 1000µs (see legend). In the bottom figure,
with longest anneal time, the pause has little to no effect.
Each data point is averaged from 5000 anneals with 5 differ-
ent choice of gauge.
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FIG. 26. Changing of the spectral properties upon re-scaling
the problem. This is the same 12 qubit problem studied in
Fig. 27 (I012). The location of the minimum gap changes as
sgap = [0.438, 0.508, 0.558, 0.608], and the minimum gap itself
changes accordingly as ∆min = [0.15, 0.10, 0.06, 0.03] GHz,
when the problem Hamiltonian is re-scaled by [1, 2, 4, 8] re-
spectively (see legend). Energy units defined via h = 1.
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FIG. 27. Success probability P0 heat map for a single 12
qubit instance (I012) where the annealing schedule has a pause
of length tp inserted at sp, where from top to bottom the
problem Hamiltonian Hp has been re-scaled by a factor of
1,2,4,8 (that is, Hp → Hp/C, where C = 1, 2, 4, 8). See Fig. 26
for the corresponding minimum gap plot. Each data point is
an average from 10000 anneals with 5 gauges. Notice the
change in the color bar scale between the different images.
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